The Drosophila Caspase Inhibitor DIAP1 Is Essential for Cell Survival and Is Negatively Regulated by HID

نویسندگان

  • Susan L Wang
  • Christine J Hawkins
  • Soon Ji Yoo
  • H.-Arno J Müller
  • Bruce A Hay
چکیده

Drosophila Reaper (RPR), Head Involution Defective (HID), and GRIM induce caspase-dependent cell death and physically interact with the cell death inhibitor DIAP1. Here we show that HID blocks DIAP1's ability to inhibit caspase activity and provide evidence suggesting that RPR and GRIM can act similarly. Based on these results, we propose that RPR, HID, and GRIM promote apoptosis by disrupting productive IAP-caspase interactions and that DIAP1 is required to block apoptosis-inducing caspase activity. Supporting this hypothesis, we show that elimination of DIAP1 function results in global early embryonic cell death and a large increase in DIAP1-inhibitable caspase activity and that DIAP1 is still required for cell survival when expression of rpr, hid, and grim is eliminated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Drosophila inhibitor of apoptosis (IAP) DIAP2 is dispensable for cell survival, required for the innate immune response to gram-negative bacterial infection, and can be negatively regulated by the reaper/hid/grim family of IAP-binding apoptosis inducers.

Many inhibitor of apoptosis (IAP) family proteins inhibit apoptosis. IAPs contain N-terminal baculovirus IAP repeat domains and a C-terminal RING ubiquitin ligase domain. Drosophila IAP DIAP1 is essential for the survival of many cells, protecting them from apoptosis by inhibiting active caspases. Apoptosis initiates when proteins such as Reaper, Hid, and Grim bind a surface groove in DIAP1 bac...

متن کامل

The Drosophila caspase DRONC is regulated by DIAP1.

We have isolated the recently identified Drosophila caspase DRONC through its interaction with the effector caspase drICE. Ectopic expression of DRONC induces cell death in Schizosaccharomyces pombe, mammalian fibroblasts and the developing Drosophila eye. The caspase inhibitor p35 fails to rescue DRONC-induced cell death in vivo and is not cleaved by DRONC in vitro, making DRONC the first iden...

متن کامل

The Drosophila caspase DRONC cleaves following glutamate or aspartate and is regulated by DIAP1, HID, and GRIM.

The caspase family of cysteine proteases plays important roles in bringing about apoptotic cell death. All caspases studied to date cleave substrates COOH-terminal to an aspartate. Here we show that the Drosophila caspase DRONC cleaves COOH-terminal to glutamate as well as aspartate. DRONC autoprocesses itself following a glutamate residue, but processes a second caspase, drICE, following an as...

متن کامل

The CARD-carrying caspase Dronc is essential for most, but not all, developmental cell death in Drosophila.

The initiator caspase Dronc is the only Drosophila caspase that contains a caspase activation and recruitment domain (CARD). Although Dronc has been implicated as an important effector of apoptosis, the genetic function of dronc in normal development is unclear because dronc mutants have not been available. In an EMS mutagenesis screen, we isolated four point mutations in dronc that recessively...

متن کامل

Down-regulation of inhibitor of apoptosis levels provides competence for steroid-triggered cell death

A pulse of the steroid hormone ecdysone triggers the destruction of larval salivary glands during Drosophila metamorphosis through a transcriptional cascade that converges on reaper (rpr) and head involution defective (hid) induction, resulting in caspase activation and cell death. We identify the CREB binding protein (CBP) transcriptional cofactor as essential for salivary gland cell death. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 98  شماره 

صفحات  -

تاریخ انتشار 1999